(6R)-5,6,7,8-tetrahydro-L-biopterin and its stereoisomer prevent ischemia reperfusion injury in human forearm.

نویسندگان

  • Lila Mayahi
  • Simon Heales
  • David Owen
  • Juan P Casas
  • Joanne Harris
  • Raymond J MacAllister
  • Aroon D Hingorani
چکیده

OBJECTIVE 6R-5,6,7,8-tetrahydro-L-biopterin (6R-BH4) is a cofactor for endothelial nitric oxide synthase but also has antioxidant properties. Its stereo-isomer 6S-5,6,7,8-tetrahydro-L-biopterin (6S-BH4) and structurally similar pterin 6R,S-5,6,7,8-tetrahydro-D-neopterin (NH4) are also antioxidants but have no cofactor function. When endothelial nitric oxide synthase is 6R-BH4-deplete, it synthesizes superoxide rather than nitric oxide. Reduced nitric oxide bioavailability by interaction with reactive oxygen species is implicated in endothelial dysfunction (ED). 6R-BH4 corrects ED in animal models of ischemia reperfusion injury (IRI) and in patients with cardiovascular risks. It is uncertain whether the effect of exogenous 6R-BH4 on ED is through its cofactor or antioxidant action. METHODS AND RESULTS In healthy volunteers, forearm blood flow was measured by venous occlusion plethysmography during intra-arterial infusion of the endothelium-dependent vasodilator acetylcholine, or the endothelium-independent vasodilator glyceryl trinitrate, before and after IRI. IRI reduced plasma total antioxidant status (P=0.03) and impaired vasodilatation to acetylcholine (P=0.01), but not to glyceryl trinitrate (P=0.3). Intra-arterial infusion of 6R-BH4, 6S-BH4 and NH4 at approximately equimolar concentrations prevented IRI. CONCLUSION IRI causes ED associated with increased oxidative stress that is prevented by 6R-BH4, 6S-BH4, and NH4, an effect mediated perhaps by an antioxidant rather than cofactor function. Regardless of mechanism, 6R-BH4, 6S-BH4, or NH4 may reduce tissue injury during clinical IRI syndromes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects.

An oral glucose challenge causes transient impairment of endothelial function, probably because of increased oxidative stress. During oxidative stress, endothelial nitric oxide (NO) synthase (eNOS) becomes uncoupled because of decreased bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of eNOS. Therefore, we examined whether an acute supplement of BH4 could restore endothelial...

متن کامل

Protective effects of (6R)-5,6,7,8-tetrahydro-l-biopterin on local ischemia/reperfusion-induced suppression of reactive hyperemia in rat gingiva

We herein investigated the regulatory mechanism in the circulation responsible for rat gingival reactive hyperemia (RH) associated with ischemia/reperfusion (I/R). RH was analyzed using a laser Doppler flowmeter. RH and I/R were elicited by gingival compression and release with a laser Doppler probe. RH increased in a time-dependent manner when the duration of compression was between 30 s and 2...

متن کامل

Identification of the 4-amino analogue of tetrahydrobiopterin as a dihydropteridine reductase inhibitor and a potent pteridine antagonist of rat neuronal nitric oxide synthase.

The binding of tetrahydropteridines with 6-di- and trihydroxypropyl side chains to recombinant rat neuronal nitric oxide (NO) synthase (EC 1.14.13.39) was determined by competition with 6R-[3'-3H]-5,6,7,8-tetrahydro-L-erythro-biopterin (6R-[3'-3H]H4biopterin). Although all but one of the derivatives exhibited only poor affinities (Ki 50 microM), the 4-amino analogue of 6R-H4 biopterin was a pot...

متن کامل

Effects of tetrahydrobiopterin on endothelial dysfunction in rats with ischemic acute renal failure.

The role of nitric oxide (NO) in ischemic renal injury is still controversial. NO release was measured in rat kidneys subjected to ischemia and reperfusion to determine whether (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4), a cofactor of NO synthase (NOS), reduces ischemic injury. Twenty-four hours after bilateral renal arterial clamp for 45 min, acetylcholine-induced vasorelaxation and NO release ...

متن کامل

Blockade of tetrahydrobiopterin synthesis protects neurons after transient forebrain ischemia in rat: a novel role for the cofactor.

The generation of nitric oxide (NO) aggravates neuronal injury. (6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) is an essential cofactor in the synthesis of NO by nitric oxide synthase (NOS). We attempted to attenuate neuron degeneration by blocking the synthesis of the cofactor BH4 using N-acetyl-3-O-methyldopamine (NAMDA). In vitro data demonstrate that NAMDA inhibited GTP cyclohydrolase I, the rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 27 6  شماره 

صفحات  -

تاریخ انتشار 2007